smartphone

Related Posts with Thumbnails
Showing posts with label jto syllabus. Show all posts
Showing posts with label jto syllabus. Show all posts

Monday, November 23, 2009

JTO SYLLABUS: ELECTRICAL ENGINEERING

SYLLABUS: ELECTRICAL ENGINEERING

SECTION - I

1. EM Theory
Electric and magnetic fields. Gauss’s Law and Amperes Law. Fields in dielectrics, conductors and magnetic materials. Maxwell’s equations. Time varying fields. Plane-Wave propagating in dielectric and conducting media. Transmission lines.

2. Electrical Materials
Band Theory, Conductors, Semi-conductors. and Insulators. Superconductivity. Insulators for electrical and electronic applications. Magnetic materials. Ferro and ferri magnetism. Ceramics, Properties and applications. Hall effect alJd its applications. Special semi conductors.

3. Electrical Circuits
Circuits elements. Kirchoff’s Laws. Mesh and nodal analysis. Network Theorems and applications. Natural response and forced response. Transient response and steady state response for arbitrary inputs. Properties of networks in terms of poles and zeros. Transfer function. Resonant circuits. Three phase circuits. Two-port networks. Elements of two-element network synthesis.

4. Measurements and Instrumentation
Units and Standards. Error analysis, measurement of current, Voltage, power, Power-factor and energy. Indicating instruments. Measurement of resistance, inductance, Capacitance and frequency. Bridge measurements. Electronic measuring instruments. Digital Voltmeter and frequency counter. Transducers and their applications to the measurement of non-electrical quantities like temperature, pressure, flow-rate displacement, acceleration, noise level etc. Data acquisition systems. AID and D/A converters.

5. Control System
Mathematical modelling of physical systems. Block diagrams and signal flow graphs and their reduction. Time domain and frequency domain analysis of linear dynamical system. Errors for different type of inputs and stability criteria for feedback systems. Stability analysis using Routh-Hurwitz array, Nyquist plot and Bode plot. Root locus and Nicols chart and the estimation of gain and phase margin. Basic concepts of compensator design. State variable matrix and its use in system modelling and design. Sampled data system and performance of such a system with the samples in the error channel. Stability of sampled data system. Elements of non-linear control analysis. Control system components, electromechanical, hydraulic, pneumatic components.

SECTION - II

1. Electrical Machines and Power Transformers
Magnetic Circuits - Analysis and Design of Power transformers. Construction and testing. Equivalent circuits. Losses and efficiency. Regulation. Auto-transformer, 3-phase transformer. Parallel operation. Basic concepts in rotating machines. EMF, torque, basic machine types. Construction and operation, leakage losses and efficiency.
D.C. Machines. Construction, Excitation methods. Circuit models. Armature reaction and commutation. Characteristics and performance analysis. Generators and motors. Starting and speed control. Testing, Losses and efficiency.
Synchronous Machines. Construction. Circuit model. Operating characteristics and performance analysis. Synchronous reactance. Efficiency. Voltage regulation. Salient-pole machine, Parallel operation. . tiunting. Short circuit transients.
Induction Machines. Construction. Principle of operation. Rotating fields. Characteristics and performance analysis. Determination of circuit model. Circle diagram. Starting and speed control. Fractional KW motors. Single-phase synchronous and induction motors.

2. Power systems
Types of Power Stations, Hydro, Thermal and Nuclear Stations. Pumped storage plants. Economics and operating factors.
Power transmission lines. Modeling and performance characteristics. Voltage control. Load flow studies. Optimal power system operation. Load frequency control. Symmetrical short circuit analysis. ZBus formulation. Symmetrical Components. Per Unit representation. Fault analysis. Transient and steady-state stability of power systems. Equal area criterion.
Power system Transients. Power system Protection Circuit breakers. Relays. HVDC transmission.

3. Analog and Digital Electronics and Circuits
Semiconductor device physics, PN junctions and transistors, circuit models and parameters, FET, Zener, tunnel, Schottky, photo diodes and their applications, rectifier circuits, voltage regulators and multipliers, switching behavior of diodes and transistors.
Small signal amplifiers, biasing circuits, frequency response and improvement, multistage amplifiers and feed-back amplifiers, D.C.
amplifiers, Oscillators. Large signal amplifiers, coupling methods, push pull amplifiers, operational amplifiers, wave shaping circuits. Multivibrators and flip-flops and their applications. Digital logic gate families, universal gates-combination circuits for arithmetic and logic operational, sequential logic circuits. Counters, registers, RAM and ROMs.

4. Microprocessor
Microprocessor architecture-Instruction set and simple assembly language programming. Interfacing for memory and I/O. Applications of Micro-processors in power system.

5. Communication Systems
Types of modulation; AM, FM and PM. Demodulators. Noise and bandwidth considerations. Digital communication systems. Pulse code modulation and demodulation. Elements of sound and vision broadcasting. Carrier communication. Frequency division and time division multiplexing, Telemetry system in power engineering.

6. Power Electronics
Power Semiconductor devices. Thyristor. Power transistor, GTOs and MOSFETS. Characteristics and operation. AC to DC Converters; 1phase and 3-phase DC to DC Converters; AC regulators. Thyristor controlled reactors; switched capacitor networks. Inverters; single-phase and 3-phase. Pulse width modulation. Sinusoidal modulation with uniform sampling. Switched mode power supplies.

SECTION - III

GENERAL ABILITY TEST
The candidate’s comprehension and understanding of general English shall be tested through simple exercises. Questions on knowledge of current events and of such matter of everyday observation and experience in their scientific aspects as may be expected of an educated person. Questions will also be included on events and developments in Tele Communications, History of India and Geography. These will be of a nature, which can be answered without special study by an educated person.

Continue reading...

JTO SYLLABUS: CIVIL ENGINEERING STREAM

SYLLABUS: CIVIL ENGINEERING STREAM

SECTION - I

1. BUILDING MATERIAL
Timber: Different types and species of structural timber, density-moisture relationship, strength in different directions, defects, influence of defects on permissible stress, preservation, dry and wet rots, plywood, codal provision for design.
Bricks: Types, Indian standard classification, absorption, saturation factor, strength in masonry, influence of mortar strength and masonary strength.
Cement: Compounds, different types, setting times, strength.
Cement Mortar: Ingredients, proportions, water demands, mortar for plastering and masonry.
Concrete: Importance of W/C ratio, strength, ingredients including admixtures, workability, testing, elasticity, non-destructive testing mix design method.

2. SOLID MECHANICS
Elastic constants, stress, plane stress, Mohr’s circle of stress, strains, plain strain, Mohr’s circle of strain, combined stress. Elastic theories of Failure, simple and shear bending, Torsion of circular and rectangular section and simple members.

3. STRUCTURAL ANALYSIS
Analysis of determinate structures- different methods including graphical methods. Analysis of indeterminate skeletal frames- moment distribution, slope deflection, stiffness and force methods, energy methods. Muller-Breslau principal and application. Plastic analysis of indeterminate beams and simple frames-shape factors.

4. DESIGN OF STEEL STRUCTURES
Principle of working stress method. Design of connections of simple members. Built up sections and frames. Design of Industrial roofs. Principles of ultimate load design. Design of members and frames.

5. DESIGN OF CONCRETE AND MASONRY STRUCTURES.
Limit state design for bending, shear, axial compression and combined forces, Codal provisions for slabs, beams, walls and footings. Working stress method of design of R.C. members.
Principles of prestressed concrete design, material, method of prestressing losses. Design of simple members and determinates structures. Introductions to prestressing of indeterminate structures. Design of brick masonary as per I.S. codes.

6. CONSTRUCTION PRACTICE, PLANNING AND MANAGEMENT.

  • Concreting Equipment
    Weight batcher, Mixer, vibrator, batching plant, concrete pump. Cranes, hoists, lifting equipment.
  • Earthwork Equipment
    Power shovel, hoe, dozer, dumper, trailers and tractors, rollers, sheep foot rollers, pumps. Construction, planning and Management.
    Bar chart, linked bar chart, work break down structures, Activity-on-arrow diagrams. Critical path, probabilistic activity durations; Event-based networks.
    PERT network: Time-cost study, crashing; Resource allocation.

SECTION - II

1. (a) FLUID MECHANICS, OPEN CHANNEL, PIPE FLOW
Fluid properties, pressure, thrust, Buoyancy, Flow Kinematics, integration, of flow equation, Flow measurement, Relative motion, Moment of momentum, Viscosity, Boundary layer and control, Drag, Lift, Dimensional analysis, Modeling, Cavitations, Flow oscillations, Momentum and Energy principles, in open cannel flow, Flow control, Hydraulic jump, Flow section and properties, Normal flow, Gradually varied flow, Flow development and losses in pipe flows, Measurements, Siphons, Surges and Water hammer, Delivery of Power Pipe networks.
(b) HYDRAULIC MACHINES AND HYDROPOWER
Centrifugal pumps, performance parameters, scaling, pumps in parallel, Reciprocating pumps, air vessels, performance parameters.

2. (a) HYDROLOGY
Hydrological cycle, precipitation and related data analysis, PMP, unit and synthetic hydrographs, Evaporation and transpiration, floods and their management, PMG, Streams and their gauging, .River morphology. Rooting of floods, Capacity of reservoirs.
(b) WATER RESOURCES ENGINEERING
Water resources of the globe: Multipurpose uses of Water, Soil Plant water relationships, irrigation systems, water demand assessment, Storage and their yields, ground water yield and well Hydraulics, Water logging, drainage design, Irrigation revenue, Design of rigid boundary canals, Lacey’ and Tractive force concepts in canal design, lining of canals; Sediment transport in canals; Non-Overflow and overflow sections of gravity dams and their design, Energy dissipaters and tail water rating, Design of head works, distribution work, falls, cross-drainage work, outlets, River training.

ENVIRONMENT ENGINEERING
3. (a)WATER SUPPLY ENGINEERING
Sources of supply, yield, design of intakes and conductors, Estimation of demand, Water quality standards, Control of water born diseases. Primary and secondary treatment, detailing and maintenance of treatment units. Conveyance and distribution systems of treated water, leakage and control, Rural water supply, Institutional and Industrial water supply.
(b) WASTE WATER ENGINEERING
Urban rain water disposal, system of sewage collection and disposal, Design of sewers and sewerages systems, pumping, Characteristic of sewage and its treatment, Disposal of products of sewage treatment, stream flow rejuvenation, Institutional and industrial sewage management, plumbing system, Rural and semi-urban sanitation.
( c) SOLID WASTE MANAGEMENT
Sources, classification, collection and disposal, Design and Management of landfills.
(d) AIR AND NOISE POLLUTION AND ECOLOGY
Sources and effects of air pollution, monitoring of Air pollution, Noise-pollution and standards; Ecological Chain and balance, Environmental assessment.

4. (a)SOIL MECHANICS
Properties of soils, classification and interrelationship, Compaction behavior, method of compaction and their choice, Permeability and seepage, flow nets, Inverter filters, Compressibility and consolidation ,shearing resistance, stresses and failure, SO testing in laboratory and in-situ, Stress path and applications, Earth pressure theories, stress distribution in soil, soil exploration, samplers, load tests ,penetration tests.
(b) FOUNDATION ENGINEERING
Type of foundations, Selection criteria, bearing capacity, settlement, laboratory and field test, Types of piles and their design and layout, Foundations on expansive soils, swelling and it prevention , foundation on swelling soils.

5. (a) SURVEYING
Classification of surveys, scales, accuracy, Measurement of distances-direct and indirect methods, optical and electronic devices, Measurement of directions, prismatic compass, local attraction, Theodolites-types Measurment of elevations, Spirit and trigonometric leveling, Relief representation,Contours,Digital elevation modeling concept, Establishment of control by triangulations and traversing measurements and adjustment of observations, computation of coordinates, Field astronomy, concept of global positioning system, Map preparation by plane tabling and by photogrammetry, Remote sensing concepts, map substitutes.
(b) TRANSPORTATION ENGINEERING
Planning of highway systems, alignment and geometric design, horizontal and vertical curves, grade separation, Materials and construction methods for different surfaces and maintenance, Principles of pavement design, Drainage.
Traffic surveys, intersections, signaling, Mass transit systems, accessibility, networking. Planning of railway systems, terminology and designs, relating to gauge, track controls, transits, rolling stock, tractive power and track modernization, Maintenance Appurtenant works, Containerization.

SECTION - III

GENERAL ABILITY TEST
The candidate’s comprehension and understanding of general English shall be tested through simple exercises. Questions on knowledge of current events and of such matter of everyday observation and experience in their scientific aspects as may be expected of an educated person. Questions will also be included on events and developments in Tele Communications, History of India and Geography. These will be of a nature, which can be answered without special study by an educated person.

Continue reading...

JTO SYLLABUS: CIVIL ENGINEERING STREAM

SYLLABUS: CIVIL ENGINEERING STREAM

SECTION - I

1. BUILDING MATERIAL
Timber: Different types and species of structural timber, density-moisture relationship, strength in different directions, defects, influence of defects on permissible stress, preservation, dry and wet rots, plywood, codal provision for design.
Bricks: Types, Indian standard classification, absorption, saturation factor, strength in masonry, influence of mortar strength and masonary strength.
Cement: Compounds, different types, setting times, strength.
Cement Mortar: Ingredients, proportions, water demands, mortar for plastering and masonry.
Concrete: Importance of W/C ratio, strength, ingredients including admixtures, workability, testing, elasticity, non-destructive testing mix design method.

2. SOLID MECHANICS
Elastic constants, stress, plane stress, Mohr’s circle of stress, strains, plain strain, Mohr’s circle of strain, combined stress. Elastic theories of Failure, simple and shear bending, Torsion of circular and rectangular section and simple members.

3. STRUCTURAL ANALYSIS
Analysis of determinate structures- different methods including graphical methods. Analysis of indeterminate skeletal frames- moment distribution, slope deflection, stiffness and force methods, energy methods. Muller-Breslau principal and application. Plastic analysis of indeterminate beams and simple frames-shape factors.

4. DESIGN OF STEEL STRUCTURES
Principle of working stress method. Design of connections of simple members. Built up sections and frames. Design of Industrial roofs. Principles of ultimate load design. Design of members and frames.

5. DESIGN OF CONCRETE AND MASONRY STRUCTURES.
Limit state design for bending, shear, axial compression and combined forces, Codal provisions for slabs, beams, walls and footings. Working stress method of design of R.C. members.
Principles of prestressed concrete design, material, method of prestressing losses. Design of simple members and determinates structures. Introductions to prestressing of indeterminate structures. Design of brick masonary as per I.S. codes.

6. CONSTRUCTION PRACTICE, PLANNING AND MANAGEMENT.

  • Concreting Equipment
    Weight batcher, Mixer, vibrator, batching plant, concrete pump. Cranes, hoists, lifting equipment.
  • Earthwork Equipment
    Power shovel, hoe, dozer, dumper, trailers and tractors, rollers, sheep foot rollers, pumps. Construction, planning and Management.
    Bar chart, linked bar chart, work break down structures, Activity-on-arrow diagrams. Critical path, probabilistic activity durations; Event-based networks.
    PERT network: Time-cost study, crashing; Resource allocation.

SECTION - II

1. (a) FLUID MECHANICS, OPEN CHANNEL, PIPE FLOW
Fluid properties, pressure, thrust, Buoyancy, Flow Kinematics, integration, of flow equation, Flow measurement, Relative motion, Moment of momentum, Viscosity, Boundary layer and control, Drag, Lift, Dimensional analysis, Modeling, Cavitations, Flow oscillations, Momentum and Energy principles, in open cannel flow, Flow control, Hydraulic jump, Flow section and properties, Normal flow, Gradually varied flow, Flow development and losses in pipe flows, Measurements, Siphons, Surges and Water hammer, Delivery of Power Pipe networks.
(b) HYDRAULIC MACHINES AND HYDROPOWER
Centrifugal pumps, performance parameters, scaling, pumps in parallel, Reciprocating pumps, air vessels, performance parameters.

2. (a) HYDROLOGY
Hydrological cycle, precipitation and related data analysis, PMP, unit and synthetic hydrographs, Evaporation and transpiration, floods and their management, PMG, Streams and their gauging, .River morphology. Rooting of floods, Capacity of reservoirs.
(b) WATER RESOURCES ENGINEERING
Water resources of the globe: Multipurpose uses of Water, Soil Plant water relationships, irrigation systems, water demand assessment, Storage and their yields, ground water yield and well Hydraulics, Water logging, drainage design, Irrigation revenue, Design of rigid boundary canals, Lacey’ and Tractive force concepts in canal design, lining of canals; Sediment transport in canals; Non-Overflow and overflow sections of gravity dams and their design, Energy dissipaters and tail water rating, Design of head works, distribution work, falls, cross-drainage work, outlets, River training.

ENVIRONMENT ENGINEERING
3. (a)WATER SUPPLY ENGINEERING
Sources of supply, yield, design of intakes and conductors, Estimation of demand, Water quality standards, Control of water born diseases. Primary and secondary treatment, detailing and maintenance of treatment units. Conveyance and distribution systems of treated water, leakage and control, Rural water supply, Institutional and Industrial water supply.
(b) WASTE WATER ENGINEERING
Urban rain water disposal, system of sewage collection and disposal, Design of sewers and sewerages systems, pumping, Characteristic of sewage and its treatment, Disposal of products of sewage treatment, stream flow rejuvenation, Institutional and industrial sewage management, plumbing system, Rural and semi-urban sanitation.
( c) SOLID WASTE MANAGEMENT
Sources, classification, collection and disposal, Design and Management of landfills.
(d) AIR AND NOISE POLLUTION AND ECOLOGY
Sources and effects of air pollution, monitoring of Air pollution, Noise-pollution and standards; Ecological Chain and balance, Environmental assessment.

4. (a)SOIL MECHANICS
Properties of soils, classification and interrelationship, Compaction behavior, method of compaction and their choice, Permeability and seepage, flow nets, Inverter filters, Compressibility and consolidation ,shearing resistance, stresses and failure, SO testing in laboratory and in-situ, Stress path and applications, Earth pressure theories, stress distribution in soil, soil exploration, samplers, load tests ,penetration tests.
(b) FOUNDATION ENGINEERING
Type of foundations, Selection criteria, bearing capacity, settlement, laboratory and field test, Types of piles and their design and layout, Foundations on expansive soils, swelling and it prevention , foundation on swelling soils.

5. (a) SURVEYING
Classification of surveys, scales, accuracy, Measurement of distances-direct and indirect methods, optical and electronic devices, Measurement of directions, prismatic compass, local attraction, Theodolites-types Measurment of elevations, Spirit and trigonometric leveling, Relief representation,Contours,Digital elevation modeling concept, Establishment of control by triangulations and traversing measurements and adjustment of observations, computation of coordinates, Field astronomy, concept of global positioning system, Map preparation by plane tabling and by photogrammetry, Remote sensing concepts, map substitutes.
(b) TRANSPORTATION ENGINEERING
Planning of highway systems, alignment and geometric design, horizontal and vertical curves, grade separation, Materials and construction methods for different surfaces and maintenance, Principles of pavement design, Drainage.
Traffic surveys, intersections, signaling, Mass transit systems, accessibility, networking. Planning of railway systems, terminology and designs, relating to gauge, track controls, transits, rolling stock, tractive power and track modernization, Maintenance Appurtenant works, Containerization.

SECTION - III

GENERAL ABILITY TEST
The candidate’s comprehension and understanding of general English shall be tested through simple exercises. Questions on knowledge of current events and of such matter of everyday observation and experience in their scientific aspects as may be expected of an educated person. Questions will also be included on events and developments in Tele Communications, History of India and Geography. These will be of a nature, which can be answered without special study by an educated person.

Continue reading...
 

Followers

About Us

Welcome everyone , this is a blog on college life. How the student live in college ? their lifestyle , love story , romance, study , daily requirement and many other thing that effect the student life. Information about different university , Engineering college , medical college are give here . Question paper of different Examination .

College student Copyright © 2009 Not Magazine 4 Column is Designed by Blogger TemplateHouse Sponsored by Hindi Songs